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ABSTRACT

Your paper should be in the same format as this file.  The abstract goes here. Your abstract should be a maximum of 200 words here clearly outlining the contribution of your paper.
Our work is proposing a basic system model for simulating component-based software development process. Software project managers would take advantage of this framework by implementing a simulation system which would improve their management skills and minimize risks at real time decision making. Our framework is focused in component-based software engineering approach [1] and evolutionary software development paradigm [2] which can be adopted by organizations for decreasing product development cycle time and increase software product quality. 
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1.  Introduction

Clearly explain the nature of the problem, previous work, purpose, and contribution of the paper.
Software simulation and modeling has been largely applied to a different areas of software engineering process such as team performance analysis [3], improving or training on software engineering project skills and processes[5], [7], [8], [9], [10], [11]. Specific software engineering activities such as software maintenance [12] and software development [13] had also successfully applyied simulation techniques for supporting its better understanding on specific environments. In parallel of software industry growth modern software development approaches such as component-based software engineering [1] and evolutionary development [3], [4]  has been adopted by software developers in order to stay competitive and improve software product quality. Both paradigms has changed the way software development is executed today but existing simulation models approaches a more general software engineering practices that requires to be  customized in order to comply with modern paradigms. We are proposing a software development model which can be used as a framework for adapting current or new simulation systems.

CBSE paradigm [1] suggests that every development team or individual must focus its efforts at component level only. Each software COMPONENT is an atomic and interdependent piece of software that once its first version is delivered it is considered fully functional and ready to be integrated into a software system.  System integrators are responsible for putting together a set of software components in order to build a software SYSTEM. 

Evolutionary development paradigm [2], [3], [4] suggests that a software SYSTEM or application first operational version must be delivered as fast as the system architecture is defined and a minimum set of requirements that the end user can start working with is achieved. After first release the remaining system requirements can be added on a regular basis by creating fully operational versions at every release is completed. 

Basically both COMPONENTS and SYSTEMS shared similar software development behaviour. In general software requirements and software defects at its specific level are considered INPUTS which will be designed, implemented, tested and delivered by software developers what is considered PROCESSING. OUTPUT is the result of executing PROCESING activities at every interaction of software release is an enhanced COMPONENT or SYSTEM ready to be applied by the end user.

A basic discrete event simulation model [15] may be applied to define INPUT, PROCESSING and OUTPUT. The following section will describe the proposed model including these sections and its characteristics.

2.  Simulation Model description (Body of Paper)

As mentioned in the introduction section our model will define INPUT, PROCESSING and OUTPUT for a software development based on CBSE and evolutionary development process. 
We have identified at least two basic input data for our model. Software feature ´f´ is a new requirement that will be implemented during a specific development interaction and software defect ´d´ is an implementation error or discrepancy from an already implemented feature that normally pops up while end user operates a delivered version of the system.  < Do I need to describe or suggest some primitives of ´f´ and ´d´??? They might be future work>

[image: image1]
The first element of the input model is a features pool ´fp´ that consist on a set of features ´f´. Evolutionary development process such as eXtreme Programming [3] approach advice that most of these features are gathered during the initial software analysis phase prior the first software version is delivered but most of them will wait for a delivery cycle for being implemented.  It is expected that extra features can be added or dropped to ‘fp’ usually at the beginning of each development cycle occurs. Another basic element of the input model is a defects queue ´dq´ of defects ´f´ ordered by a random arrival position. The starting random arrival distribution may vary depending on the specific software project but support data for finding the correct distribution curve can be easily obtained from historical data of similar projects. Before each development cycle starts the random arrival distribution may be adjusted with new data obtained from the last development cycle for a ensuring a realistic view each time. 
< example of the random arrival distribution or mote carlo approach for features adjustments may be placed here>
< PROCESSING model description will be place here>
The software development is concluded when ´fp´ and ´dq´ are empty for at least one development cycle. 
< OUTPUT model description will be place here>
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3.  Conclusion

Clearly indicate advantages, limitations, and possible applications.
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Figure 1.0 – Input model specification
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