SDSIM: A Framework of Simulation for Component-Based Software Development
Fidel Vanegas
Hewlett Packard de Mexico/ Department of Computer Science at UAG
Montemorelos 299, Fracc. Loma Bonita
Mexico
fidel.vanegas@hp.com
Mutsuo Yashima
Department of Computer Science at Universidad Autonoma de Guadalajara
Av. Patria 1201, Zapopan, Jalisco
Mexico

Yashima2000@hotmail.com

Jesús Ubaldo Quevedo Torrero

Department of Computer Science at University of Houston

4800 Calhoun Road, Houston, Texas 77204-3010

USA

jquevedo@uh.edu

ABSTRACT

Your paper should be in the same format as this file. The abstract goes here. Your abstract should be a maximum of 200 words here clearly outlining the contribution of your paper.
Our work is proposing a basic system model for simulating component-based software development process. Software project managers would take advantage of this framework by implementing a simulation system which would improve their management skills and minimize risks at real time decision making. Our framework is focused in component-based software engineering approach [1] and evolutionary software development paradigm [2] which can be adopted by organizations for decreasing product development cycle time and increase software product quality.
KEY WORDS

Modelling, simulation, component-based, software engineering,
1. Introduction

Clearly explain the nature of the problem, previous work, purpose, and contribution of the paper.
Software simulation and modeling has been largely applied to a different areas of software engineering process such as team performance analysis [3], improving or training on software engineering project skills and processes[5], [7], [8], [9], [10], [11]. Specific software engineering activities such as software maintenance [12] and software development [13] had also successfully applyied simulation techniques for supporting its better understanding on specific environments. In parallel of software industry growth modern software development approaches such as component-based software engineering [1] and evolutionary development [3], [4] has been adopted by software developers in order to stay competitive and improve software product quality. Both paradigms has changed the way software development is executed today but existing simulation models approaches a more general software engineering practices that requires to be customized in order to comply with modern paradigms. We are proposing a software development model which can be used as a framework for adapting current or new simulation systems.

CBSE paradigm [1] suggests that every development team or individual must focus its efforts at component level only. Each software COMPONENT is an atomic and interdependent piece of software that once its first version is delivered it is considered fully functional and ready to be integrated into a software system. System integrators are responsible for putting together a set of software components in order to build a software SYSTEM.

Evolutionary development paradigm [2], [3], [4] suggests that a software SYSTEM or application first operational version must be delivered as fast as the system architecture is defined and a minimum set of requirements that the end user can start working with is achieved. After first release the remaining system requirements can be added on a regular basis by creating fully operational versions at every release is completed.

Basically both COMPONENTS and SYSTEMS shared similar software development behaviour. In general software requirements and software defects at its specific level are considered INPUTS which will be designed, implemented, tested and delivered by software developers what is considered PROCESSING. OUTPUT is the result of executing PROCESING activities at every interaction of software release is an enhanced COMPONENT or SYSTEM ready to be applied by the end user.

A basic discrete event simulation model [15] may be applied to define INPUT, PROCESSING and OUTPUT. The following section will describe the proposed model including these sections and its characteristics.

2. Simulation Model description (Body of Paper)

As mentioned in the introduction section our model will define INPUT, PROCESSING and OUTPUT for a software development based on CBSE and evolutionary development process.
We have identified at least two basic input data for our model. Software feature ´f´ is a new requirement that will be implemented during a specific development interaction and software defect ´d´ is an implementation error or discrepancy from an already implemented feature that normally pops up while end user operates a delivered version of the system. < Do I need to describe or suggest some primitives of ´f´ and ´d´??? They might be future work>

[image: image1]
The first element of the input model is a features pool ´fp´ that consist on a set of features ´f´. Evolutionary development process such as eXtreme Programming [3] approach advice that most of these features are gathered during the initial software analysis phase prior the first software version is delivered but most of them will wait for a delivery cycle for being implemented. It is expected that extra features can be added or dropped to ‘fp’ usually at the beginning of each development cycle occurs. Another basic element of the input model is a defects queue ´dq´ of defects ´f´ ordered by a random arrival position. The starting random arrival distribution may vary depending on the specific software project but support data for finding the correct distribution curve can be easily obtained from historical data of similar projects. Before each development cycle starts the random arrival distribution may be adjusted with new data obtained from the last development cycle for a ensuring a realistic view each time.
< example of the random arrival distribution or mote carlo approach for features adjustments may be placed here>
< PROCESSING model description will be place here>
The software development is concluded when ´fp´ and ´dq´ are empty for at least one development cycle.
< OUTPUT model description will be place here>
For the body of your document, use Times New Roman font, 10-point type size, single-spaced. The whole document should be fully justified (not only left-justified). Headings should be 12-point, upper- and lower-case, bold. Subheadings should be 10-point upper- and lower-case.

· Paper size: LETTER (8.5” by 11.0” or 21.6 cm by 27.9 cm). A4 (210 mm by 297 mm, 8.26” by 11.69”) will NOT be accepted.

· Margins:

-Top of first page 1.25” (3.2 cm)

-Bottom, left, and right 0.75” (1.9 cm)

-Subsequent pages 0.75” for top, bottom, left, and right 0.75” (1.9 cm)

-Space between two columns 0.5” (1.25 cm)

· Justification: Full justification of the document
· No headers and footers, no page numbers.
2.1 Graphs, Tables, and Photographs

Tables and Graphs: Minimum 8-point type size, minimum line thickness 0.13” or .30 mm, all captions should be upper- and lower-case, bold, and centered over one or two columns of body text.

Illustrations and Photographs: Halftones, minimum of 8-point type size. Captions should be in upper- and lower-case, bold, and centered over 1 or 2 columns of body text. Images must be computer-designed and submitted as EMBEDDED images in your document (postscript, .pdf, or MS Word format). Digitized photographs in 256 greyscale are recommended. Please do not submit color images.

3. Conclusion

Clearly indicate advantages, limitations, and possible applications.

4. Acknowledgements

A brief acknowledgement section may be included between the Conclusion and References (optional). Do not include author biographies.

References:

References need to be numbered as they appear in your text ([1], [2], [3], etc) and should appear in your reference section in numerical order (not alphabetically).

The required format for references is as follows:

(Format for Proceedings Papers)

[1] W.J. Book, Modelling design and control of flexible manipulator arms. A tutorial review, Proc. 29th IEEE Conf. on Decision and Control, San Francisco, CA, 1990, 500-506.

(Format for Journal Papers)

[2] M. Ozaki, Y. Adachi, Y. Iwahori, & N. Ishii, Application of fuzzy theory to writer recognition of Chinese characters, International Journal of Modelling and Simulation, 18(2), 1998, 112-116.

Note that the journal title and volume number (but not issue number) are set in italics.

(Format for Books)

[3] R.E. Moore, Interval analysis (Englewood Cliffs, NJ: Prentice-Hall, 1966).

Note that the title of the book is in lower case letters and italicized. There is no comma following the title. Place of publication and publisher are given.

[1] George T. Heineman & William T. Councill, Component-Based Software Engineering (Addison Wesley, 2001).
[2] Ian Sommersville, Software Process Models, ACM Computing Surveys (CSUR) Volume 28, Issue 1, 1996, 269-271.
[3] Juric R, Extreme programming and its development practices, ITI 2000. Proceedings of the 22nd International Conference on Information Technology Interfaces, 2000, Pages:97 – 104.

[4] Priestley M,. Utt M.H, A unified process for software and documentation development, Professional Communication Conference, Proceedings of 2000 Joint IEEE International and 18th Annual Conference on Computer Documentation (IPCC/SIGDOC 2000), 2000, Pages:221 – 238.

[5] Dufner, D, Kwon O, Doty A, Improving software development project team performance: a Web-based expert support system for project control, Proceedings of the 32nd Annual Hawaii International Conference on system sciences 1999, Volume: Track 6 Pages: 6 pp
[6] Merrill D, Collofello, J.S, Improving software project management skills using a software project simulator, Proceedings of Frontiers in Education Conference 27th Annual Conference. 'Teaching and Learning in an Era of Change, 1997, Pages:1361 - 1366 vol.3.
[7] Anke Drappa, Jochen Ludewig, Simulation in software engineering training, Proceedings of the 22nd international conference on Software engineering, 2000.

[8] Ondash C.S, Maloney S, Huerta, J.M, Large project simulation: A powerful tool for project management analysis, Simulation Conference, Proceedings, Pages:231 - 239
[9] Abdel-Hamid, T.K, The dynamics of software project staffing: a system dynamics based simulation approach, IEEE Transactions on Software Engineering, 1989, Pages:109 – 119.
[10] Andersson C, Karlsson L, Nedstam, J, Host M, Nilsson B.I, Understanding software processes through system dynamics simulation: a case study, Proceedings of Ninth Annual IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, 2002 Pages:41 – 48.
[11] Barbieri A, Fuggetta, A, Lavazza, L, Tagliavini M, DynaMan: a tool to improve software process management through dynamic simulation, International Workshop on Computer-Aided Software Engineering, 1992, Pages:166 – 175.
[12] Podnar I, Mikac B, Software maintenance process analysis using discrete-event simulation, Fifth European Conference on Software Maintenance and Reengineering, 2001 Pages:192 – 195.
[13] Carr D, Koestler R, System Dynamics Models Of Software Developments, Proceedings of the 5th International on Experience with Software Process Models, 1989, Pages:46 – 48.
[14] McBeath D.F, Keezer W.S, Simulation in Support of Software Development, Simulation Conference Proceedings, 1993, Pages:1143 – 1151.
[15] Discrete event simulation book

Submitting Your Final Manuscript

Deadline for receipt of final manuscripts is posted on the conference webpage.

In order for your final manuscript to be published, the following conditions must be satisfied:

1. Your paper must be registered and fully paid-for by the deadline.

2. Your paper must be presented at the conference by one of the authors.

3. Your paper must be submitted via email to finalpapers@iasted.org as a MS Word (.doc), postscript (.ps), or Adobe Acrobat (.pdf) file attachment. All papers must be submitted electronically, except by prior written arrangement with IASTED. Hardcopies will not be accepted otherwise.

4. Papers poorly produced or incorrectly formatted past the deadline will not be included in the proceedings.

Figure 1.0 – Input model specification

Fixed & Adjusted

Arrival

Random

Arrival

‘d’ domain

´dq’ {d1, d2, d3 … dn}

´fp´ {f1, f2,f3 … fn}

‘f’ domain

