
Technology & Teamwork 

A Unified Process for Software and 
Documentation Development 

Michael Priestley 
IBM Toronto Lab 

1150 Eglinton Ave. E. 
Toronto, Ont. M3C 1H7 

mpriestley@acm. org 

Mary Hunter Utt' 
Sitescape, Inc. 

Ten Clock Tower Place, Suite 100 
Maynard, MA 01754 

utt@si tescape. com 

This paper proposes integration of the documentation development process into the Rational 
Unified Process (RUP), a formal development process for software applications. Spec$cally, 
the paper identifies (in RUP parlance) the workers in the process (such as technical writer, 
information architect), the art facts required by and produced by the documentation process 
(including concept, task, and reference documentation), and the documentation development 
workjlow (the activities of the workers who produce the artifacts). 

This paper describes a documentation development process in terms of its integration points 
with software development processes, and also in terms of its own jlow and progression as a 
separate process. 

~ 

I This paper represents work done while this co-author worked for Rational Software, Inc 
221 

0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

INTRODUCTION 

The end-user infomation, or documentation, delivered with a software product is an integral 
part of that product. In fact, the product effectively does not exist until its documentation exists. 
Yet many software development processes overlook the set of activities that constitute user 
information development. Consequently, user information is often thrown together hurriedly at 
the end of a project, and thus runs the risk of being incomplete, inaccurate, and unusable. 

This is ironic given that the documentation is, along with the user interface, the most user- 
visible aspect of the software product! In fact, delivering high-quality software documentation 
is a complex set of activities that parallels the development of the software (or “bits”). It begins 
with architecture, moves through analysis, design, and implementation, undergoes testing, and 
finally is delivered to users. 

The processes of developing bits and developing docs use many of the same product artifacts, 
notably use cases (formal descriptions of system behavior in particular usage scenarios), and 
have many points of intersection, such as reviews. Done well, both begin early in the product 
planning cycle, or Inception phase of the Rational Unified Process. 

The terms user information and documentation are used more or less synonymously. 
Documentation is a widely understood term, but it often connotes printed manuals. Modern 
documentation, or user infomation, has a broadening scope. Online help and documentation 
have been around for a while, and they have been joined by newer technologies such as the 
World Wide Web and embedded help. The bits and the docs are becoming more tightly 
integrated; some of the lines between them are getting fuzzier. In this paper, wherever the term 
documentation is used, it should be understood to include all types of user information, 
including printed, online, web-based, and embedded. 

The Rational Unified Process: A Brief Introduction 
The Rational Unified Process (RUP) is a set of recommended best practices for software 
development. The RUP has four basic concepts: worker, activity, artifact, and worlsflow. 

0 A worker, essentially a role, is a set of behaviors and responsibilities that an individual 
may carry out. In fact, a worker can represent more than one individual, and one 
individual can represent more than one worker. Examples: architect, test designer, 
implementer. 
An activity is something a worker does that provides a meaningful result. Examples: 
developing design guidelines; testing a component. 
An artifact is a product of an activity. Examples: design model; component; test 
procedure. 
A wor&!ow is a logical group of activities. Examples: designing; implementing; testing. 

0 

0 

These concepts come together as part of a software development process in which workers 
complete activities to produce artifacts within workflows. For more information on these 
workflows, see [I] and [2]. 

We will extend each of the existing development workflows in turn to cover the workers and 
artifacts required to develop end-user documentation, and to show how existing development 
artifacts can be used by an integrated documentation process. 

222 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

The Workflows 
The Rational Unified Process defines the following core workj7ows, which categorize most of 
the work required to develop a software product: 

0 Business modeling 
0 Requirements 
0 Analysis and design 
0 Implementation 
0 Test 
0 Deployment 

In addition to these workflows, which involve varying degrees of activity at different stages in 
the process, there are two more that are constant throughout the software process: 

0 Configuration and change management 
0 Project management 

As they are currently described in the RUP, none of these workflows include the 
documentation aspects of software development: that is, they cover how to develop the 
software, but not how to develop documentation for the software’s users. 

As described in [3], the activities of a documentation team parallel the activities of a software 
team fairly closely. Essentially, documentation development has the same workflows as 
software development: designing, writing, testing, packaging, and managing. 

While submitting documentation development to the Same rigorous process as software 
development certainly buys a degree of control and repeatability, that is not enough: 
documentation development is not a standalone process, but one that depends on the software 
development process. A combined process needs to identirjr not only documentation’s parallel 
workflows, but also how the documentation and software workflows integrate. The combined 
process needs to capture goals such as that the documentation accurately describes the software, 
and that the software does what the documentation describes. 

The purpose of the user information, or documentation, workflow is to: 

0 

0 

0 

Translate the use cases for the software into designs for online and print 
information, including organization and navigation. 
Implement the documentation design as a complete, consistent, and accurate 
information set. 
Verify that the information meets users’ needs for using the product. 
Produce or deploy the information in a timely and efficient way. 

In large, complex products or integrated sets of products, the documentation issues around 
scalability and extensibility can be quite complex. Shops that produce such information sets 
require style guides, templates and tools, and coordination across multiple groups, possibly in 
different locations. 

223 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

INTEGRATING THE SOFTWARE AND DOCUMENTATION WORKFLOWS 

Since documentation development has the same types of workflow as software development, 
there is a strong mapping between the activities in the existing workflows and the required 
activities in a new documentation workflow. 

Integration of software and documentation development can be addressed either by extending 
the existing software workflows to include documentation workers and activities, or by creating 
a new documentation workflow that is tightly integrated with multiple software workflows. 

In the following sections, selected workers, activities, and artifacts of each software workflow 
will be examined and extended to cover documentation work. This should illustrate how the 
existing software workflows could be extended to include documentation activities. 

Afier the treatment of the software workflows, the documentation workers and activities will be 
collected and summarized in terms of a single documentation workjlow. Either view should be 
correct - your approach will depend on the degree of integration between your software group 
and writing group. 

Software Workflows 
Each of the software workflows will be discussed in terms of roles and artifacts that can be 
mapped to the needs of a documentation workflow. 

The business modeling workjlow 
This is the fust workflow to begin work in a software development process: it defines the main 
workers business process analyst and business designer. 

The following artifacts, produced by the business process analyst and business designer, are of 
particular interest fiom a documentation perspective: 

Business Process Analyst: 
Glossary, defining the language of the business domain. 
Business use case model, defining the general task flow of the processes being 
addressed by the software. 

Business Designer: 
0 

0 

Business workers, business entities, and organization units, describing the users of 
the software and their organization. 
Business use cases, detailing the specific steps involving users and other entities in 
significant use cases. 
Business use case realizations, applying the steps to a specific set of users and 
entities. 

224 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

These artifacts can be mapped to an equivalent set of documentation artifacts, produced by a 
new role, the information architect: 

Information Architect: 
Analysis artifacts: 
0 

0 

Glossary, defrning the terminology to be used in the documentation 
(information architect becomes another author of the existing glossary). 
Task flow analysis, describing the tasks to be accomplished by the target 
audience, and the relationships among tasks 

Audience analysis, defining the target audience and its categories. 
Preliminary task skeletons (essentially a plain-text form of a use case), detailing 
the specific steps involved at important stages of the task flow. 
Preliminary tutorials, positioning the steps relative to a typical usage situation. 

Design artifacts: 
0 

0 

0 

One of the most important mappings here is between use cases, and their equivalents in 
documentation: task flows. From a documentation point of view, use cases are one of the most 
important artifacts in the RUP. Use cases describe the possible flows of actions involved in 
accomplishing a particular task. This information, when consolidated fiom all use cases for a 
product, gives us the product’s task flow (relationships among tasks), and at a more granular 
level, actual task documentation (steps needed to complete a task). Use-case instances, or 
scenarios, describe the possible sequences of actions for a particular use case. In documentation 
terms, these represent examples of how a task might actually be accomplished: in other words, a 
task scenario or tutorial. 

While the mapping shown here is between use cases and task flow, some groups have 
successfully extended use case models to the point where full-fledged task documentation could 
be generated automatically fiom them, as described in [4]. 

Summary 

Business procesS Analyst 
Glossary 
Business use case model 

Business Process Designer 

Business workers and other 
entities 
Business use cases 
Business use case realizations 

Information Architect 
Glossary 
Task flow analysis 
Audience analysis 
Task flowdtask skeletons 
Tutorial skeletons 

The Requirements Worktlow 
In the requirements workflow, the RUP defines the main workers system analyst, architect, and 
user inteface designer. 

The following artifacts, produced by the system analyst and user interface designer, are of 
particular interest fiom a documentation perspective: 

System Analyst: 
0 Glossary (already described - the system analyst is another author of this 

document) 

225 
0-7803-6431-7/00/%10.00 0 2000 IEEE 



Technology & Teamwork 

0 

0 

0 

Business use-case model (already described - the system analyst is another author 
of this document) 
Use-case model, created from the business use-case model, summarizing the 
intended functionality of the proposed software. 
Requirements attributes, tracking specific user requirements and the use cases that 
implement them. 
Change requests, tracking change requests from the customer. 

User Interface Designer: 
0 

0 

0 

Actors, defining users of the system and which use cases apply to them. 
User-interface prototype, defining the look and feel of the user interface 
Use-case storyboard, defining the way in which use cases will be implemented by 
the user interface. 

Some of these artifacts have already been defined in the previous workflow, and the result from 
a documentation perspective is merely a requirement to track additional inputs to the 
documentation plan. 

Information Architect: 
0 Analysis artifacts: 

Glossary (already described) 
Task-flow analysis (already described) 
Documentation requirements (from the software requirements - each software 
requirement that affects the user interface or task flows has a matching 
documentation requirement) 
Change requests (from the software change requests - any change that affects 
the user interface or task flows has a matching documentation change request) 

Audience analysis (already described), expanded to describe which parts of the 
task flow apply to which audiences. 
Documentation prototype, showing how the online information and any printed 
information will complement the look and feel of the software and be integrated 
with the user interface. 
Documentation storyboard, showing the way in which the information will be 
used along with the software. 
Sample tasks and tutorials, with U1 details filled in. 

0 U1 designer artifacts: 
0 

0 

226 
0-7803-6431-7/00/$10.00 0 2000 IEEE 

I 



Technology & Teamwork 

Summary (new artifacts only) 

System Analyst U1 Designer I laformstion Architect 
Use-case model 
Requirements 
Change requests 

Actors 
U1 prototype 
Use-case storyboard 

Updated task-flow 
analysis 
Documentation 
requirements 
Audience-to-task 

Documentation prototype 
Documentation 
storyboard 
Updated sample tasks 
and tutorials 

mapping 

The Analysis and Design Workflow 
In the analysis and design workflow, the RUP defines the main workers architecl, designer, and 
database designer. 

The following artifacts, produced by the architect and designer, are of particular interest from a 
documentation perspective: 

Architect: 
0 Analysis model, describing the organization of classes that can be inferred from the 

use case analysis 
Design model, doing the same thing but fiom a design perspective 

Designer: 

0 

Analysis and design classes (class names, relationships among classes, class 
methods, class data). 
Use-case realizations, describing how the classes interact to implement a particular 
use case. 

Database Designer: 
Data model, describing the details of what data needs to be saved, or made 
persistent, by the software. 

In this stage, the architect and designers develop a class and data model for the software. In 
many software processes, this information is considered completely irrelevant from a 
documentation perspective, since design elements such as the class hierarchy are not directly 
exposed in the user interface. However, the process that gives rise to the analysis and design 
classes and to the data model is actually quite similar to the process by which an information 
architect identifies key concepts requiring documentation, and requirements for reference 
information. While not all classes map to concepts requiring documentation, a significant 
portion of them are derived directly fiom the combination of use-case model and glossary, both 
produced in the business modeling phase. These are the same sources (task analysis and 
glossary) an information architect could use to identig key concepts. 

227 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

Information Architect: 
0 

0 

0 

0 

Concept model and concepts (from the class hierarchy and the glossary) 
Mapping of concepts to tasks (fiom the use-case realizations) 
Mapping of concepts to reference information (fiom class data, or the data model) 
Mapping of task steps to class methods (fiom class methods and use-case 
realizations) 

While the mapping between classes based on key abstractions and their documentation 
equivalents is not exact, it provides an additional check on the equivalence of the software and 
documentation. By keeping track of the key abstraction classes in the software, a writer can 
make sure that changes in the understanding or treatment of these concepts are captured in the 
documentation. 

To put it another way, both documentation concepts and software key abstraction classes are 
derived from the same sources: the glossary and use cases. By pairing the outputs from those 
sources (identiijmg the overlap between classes and concepts), we gain a mechanism for 
tracking design shifts that occur later in the software development process. When the interface 
to a key abstraction class changes, it signals a change in the way the software deals with the 
matching concept, and the concept’s documentation can be re-examined, and updated if 
necessary. 

The analysis and design models provide not only a treatment of concepts, but also mappings of 
concepts to reference information and concepts to tasks. The existence of a key abstraction class 
provides a concrete reference point for the software’s treatment of some concepts; but the 
class’s behavior in use cases and its handling of data provides relationships among concepts, 
tasks, and reference information. 

Summary 

Classes (with methods and 
data) 
Use-case realizations 
Data model 

Infarmatian Architect 
Relationships among 
concepts 
Mapping of concepts to 
tasks and reference 
information 
Relationships among 
reference information 

The Information Architecture Emerges 
We are at the point in the process where an information architecture has emerged. An 
information architecture is the organization and structure of information to meet the needs of 
users, designed with concern for aesthetic, functional, navigational, and retrieval issues. 

Every documentation set has an information architecture, either explicit or implicit. As 
described in [3], a well-defined, explicit information architecture should provide the following 
benefits: 

0 

0 

It organizes information according to the needs of the users. 
It enables the production of an aesthetically pleasing presentation of information. 
By providing a consistent organizational scheme, it helps users understand the product 
and more quickly internalize a model of its functionality. 

228 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

By providing a consistent set of navigable relationships, it allows users to find their way 
easily to the information they are seeking and to move quickly to related information. 
By building up fiom basic types and relationships into more complex categories and 
inter-relationships, the architecture enables the information to be scaled up into larger 
sets, and to be decomposed into components that can be reused in different contexts or 
for different deployment strategies. 

For example, one Rational group articulated a role-based, task-oriented documentation 
architecture, structuring the information by types of user (actor) and by the tasks and scenarios 
that represent those users’ work. By developing templates for task information, the group could 
reconfigure information for printed manuals or online help as necessary. Use case elaborations 
could be used directly in developing the task modules, and possibilities opened up for sharing 
information modules across groups with similar information organizations, or with course 
developers, or with usability engineers for test scenarios. 

In the process described in this paper, the information architect produces an information-typed 
architecture that categorizes information as tasks, concepts, or reference material. 

In the preceding list, the task flow, concept hierarchy, and reference model form an information 
architecture for the documentation. They identie the pieces of documentation needed to 
support a customer using the software in the same way that the software architecture defines the 
pieces of code needed to create the software in the first place. 

This information typing model is particularly suited to a structured process for object-oriented 
software development, because sohare  development requires analysis of the problem domain 
in exactly the same terms: concepts (classes), tasks (methods), and reference (data), with 
relationships among them captured by models (analysis, design, data, and use case). The 
mapping between the two treatments is unlikely to be perfect: just as not all classes represent 
concepts, so not all methods and data represent tasks or reference information; and fkom the 
other side, there will always be documentation that has no exact equivalent in the system (such 
as installation tasks). However, by identiwg the overlap, we can track codormance between 
software and documentation and eliminate redundant effort by coordinating the work of the 
information architect and the sohare  architect. 

229 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

THE IMPLEMENTATION WORKFLOW, THE TEST WORKFLOW, AND THE 
DEPLOYMENT WORKFLOW 

The next three workflows, while certainly important, do not integrate the software and 
documentation processes as much as the first three. 

The following additional workers are needed for these workflows: 

Implementation Workflow 
0 

0 

0 

The writer, who implements the information architecture 
The technical illustrator, who provides illustrations 
The editor, who provides quality control 

Test Workflow 
0 The documentation tester, who tests the functionality and integration of the 

information 

Deployment Workflow 
The production specialist, who administrates any automated documentation build 
processes 
The page designer, who develops templates and enforces look-and-feel consistency 
in printed and online documentation sets 

0 

0 

THE CONFIGURATION AND CHANGE MANAGEMENT WORKFLOW, AND THE 
PROJECT MANAGEMENT WORKFLOW 

The last two workflows, in effect throughout the development process, require the following 
documentation-specific roles: 

0 

0 

The documentation tools developer, who develops any project-specific tools and 
processes to support the documentation plan 
The documentation manager, who develops a documentation project plan and 
coordinates schedules and resources with the other manager roles 

THE DOCUMENTATION WORKFLOW 

The preceding workflow-based treatment concentrated on those documentation artifacts that had 
a software process equivalent, and on describing the integration points between the two 
processes. The following phase-based treatment describes each of the roles in turn, as part of a 
documentation woijklow, and then summarizes the activities for each role based on the 
development phase. 

The RUP defmes a phase as “The time between two major project milestones, during which a 
well-defined set of objectives is met, artifacts are completed, and decisions are made to move or 
not move into the next phase.” [2, glossary]. 

230 
0-7803-6431-7/00/%10.00 0 2000 IEEE 



Technology & Teamwork 

The RUP defmes the following phases for a software development process: 

0 

0 Elaboration (designing the software) 
0 Construction (building the software) 
0 Transition (shipping the software) 

Inception (gathering requirements, building a vision) 

Worker activities can vary considerably fiom phase to phase: for example, a build manager has 
little activity during the inception phase, while an architect has (hopefully) little activity during 
the transition phase (though they may have already started on the inception phase of the next 
cycle). 

The list of workers in a documentation group is long, but in fact most of these roles map to 
existing roles in the Rational Unified Process. In many groups individuals play multiple roles, 
and some roles are more or less important depending on the size of the group and the nature of 
the software. 

Information A rchitect 
The information architect is responsible for developing and maintaining the information 
architecture document, specifjrlng the overall organizational, structural, and 
navigational properties of the information set. Like the software architect, the 
information architect’s view is broad rather than deep. The information architect 
oversees the maintenance of the architectural integrity of the information set through 
implementation and deployment, and through successive versions of the software. The 
information architect is a reviewer of the software architecture document, and the 
software architect is a reviewer of the information architecture document. 

The information architect determines the components of online and printed 
documentation that will be implemented by the documentation team. The information 
architect develops and maintains the documentation project plan, specifying what 
documents will be produced in the current development cycle. 

Technical Writer 
The technical writer is responsible for developing the documentation plan, or 
specification, for each information component he or she produces. The writer writes the 
document and ensures that it is reviewed andor tested according to the plan. This role is 
an implementer role. 

Technical Editor 
Also an implementer role, the technical editor is responsible for the style and 
consistency of documentation across the entire information set. The editor is also 
responsible for the editorial style guide that defines rules and guidelines for style across 
the information set. 

231 
0-7803-6431-7/00/%10.00 0 2000 JEEE 



Technology 8z Teamwork 

Document ReviewedTester 
Similar to quality assurance for the bits, someone must validate that the documentation 
does the job it was designed to do. Document reviews are commonly part of the 
software development process. In some shops, the quality engineers may test the help 
and automated tutorials. In some cases, usability testing may include documentation. 
Thus, the artifacts may include review comments, QA plans and reports, and usability 
plans and reports, and change requests may be filed against the documentation. This is a 
tester role. 

Documentation Manager 
Like the project manager, the documentation manager allocates documentation 
resources; shapes documentation priorities; and coordinates with the project manager on 
the goals, activities, and schedule for the documentation deliverables. This information 
is part of the documentation project plan. The documentation manager also establishes 
the set of practices and tools to ensure the integrity and quality of the documentation 
artifacts. 

Tool Supporter 
Large documentation groups with a complex set of online and print deliverables often 
require programming support to integrate the various documentation tools used within 
the group and to produce the information artifacts in the formats required by the 
product. Tools requirements and plans are defined in a tool support assessment 
document. This is an implementer role. 

Production Specialist 
Production specialists, an implementer role, build the source files in the deliverable 
documentation artifacts (printed books, help systems), check the completeness and 
quality of the artifacts, and deliver the files to print vendors or to the software builds, as 
specified in the documentation project plan. The production specialists are responsible 
for the Bill of Materials, or BOM, for the information set. 

Page Designer 
The page (or screen, or book) designer is responsible for consistent look and feel of the 
user information set, including printed documents and online information. The page 
designer produces a book design, and is responsible for templates and guidelines for 
producing information according to the design. This is an implementer role. 

Technical Illustrator 
The illustrator is responsible for producing clear and consistent graphics for the user 
information set, including printed documents and online information. The illustrator 
develops guidelines and rules to ensure a consistent set of illustrations across the 
information set. This is an implementer role. 

232 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

DOCUMENTATION PHASES 

Inception Phase 
In this phase of a project, the documentation workers identify the scope of the documentation 
work for the project, review and contribute to various planning artifacts, and gain the 
concurrence of stakeholders for documentation planning. The following table identifies the 
documentation activities and the artifacts that are affected by documentation planning. A new 
artifact, the documentation project plan, is produced. The doc workers are added to the review 
lists for existing artifacts and may contribute sections to those artifacts. 

Vision document 

usmess case yze compmtors ocumentaaon project 

Documentation project 

Documentation project 
manager, Information architect 

ocumentahon project ocuxnentahon project 

233 
0-7803-6431-7/00/%10.00 0 2000 IEEE 



Technology & Teamwork 

needed. 
Determine what 
modules of 
information will be 
developed and their 
output formats 

I Develop resource, 
1 staffingplan 

I 

Elaboration Phase 
In this phase of a project, documentation workers make detailed decisions about the information 
architecture and design work needed, and develop the plan for the information set. At the end of 
this phase, the scope of work and risks are known, and implementation can begin. 

The new artifacts for the information workflow are: 

0 

0 The individual doc plans 
The booWpage design specification 

Information architecture specification, which parallels the software development plan 

The other artifacts listed in the table already exist in the RUP but now contain additional 
sections, supplied by the documentation group, about user information requirements and 
considerations. 

r Activities 

Plan for 
manufacturing 

Identify tools and 
methods plan 

Review, update style 
guides and templates 

Worker 
Information architect 

~~ 

Information designer ~ 

Documentation 
project manager 

Documentation 
project manager 

Documentation 
project manager, Tool 
specialist 
Editor, production 
specialist 

Vision document 
(use case model), 
additional user 
defmition information 
as needed. 
Vision document 
(use case model), 
information 
architecture 
specification 
Requirements, 
information 
architecture 
specification, tool 
support assessment 
Business plan, 
requirements for 
delivery 
Requirements for 
tools 

Information 
architecture 
specification, 
documentation project 
plan 

output Artifacts 
Information 
architecture 
specification 

Documentation 
project plan 

Documentation 
project plan 

Document ation 
project plan, draft 
BOM 
Documentation 
project plan, tool 
support assessment 
Editorial style guide, 
doc templates 

234 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

Develop doc test plan 
to ensure that info is 
complete, accurate, 
usable, accessible 
Identi@ dependencies, 
including U1 
requirements for text, 
error messages, etc. 
Elaborate doc-related 
requirements 
Produce detailed 

~ iteration plan and 
1 schedule 

Produce final doc plan I------ 

I 

Develop plans for 
individual documents 

Develop plans for doc 
tools support 

Develop booWpage 
design specification 

I Update editorial style 
guide 

Develop the build I Plan 

Develop localization 
plan for documents 

Documentation 
project manager, 
information designer 
Usability engineer, 
QA engineer 

Documentation 
project manager 

Documentation 
project manager 
Documentation 
project manager 

Writer, editor 

Tool specialist 

Book designer, 
illustrator 

Editor 

Production specialist 

Documentation 
project manager 

Vision document (use 
case model), 
documentation project 
plan, requirements 
Risk management 
Plan 

Documentation 
project plan 
Software project plan 

Information 
architecture 
specification, 
documentation project 

Documentation 
project plan, tool 
support assessment 
Information 
architecture 
specification, 
documentation project 
Dlan 

plan 

Information 
architecture 
specification, 
documentation project 
plan, individual doc 

Documentation 
project plan, 
individual doc plans 
Information 
architecture 
specification, 
documentation project 
plan, individual doc 

plans 

plans 

Documentation 
project plan 

Test plans 

Risk list 

Requirements 

Documentation 
project plan 

Doc plans 

Tools specification 

Book design 
specification 

Editorial style guide 

Build plan 

Localization plan 

235 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

Execute the doc testing plan 

Complete the Bill of Materials 
Execute internal deployment 
Dlan 

Construction Phase 
In this phase of a project, the documents are written and produced as needed for review, beta 
testing, etc. Help files are integrated with the software and tested as needed. 

Reviewers, QA engineers, Test results 
usability engineers, 
documentation testers, editors 
Production specialist BOM 
Production specialist Test results 

The new artifacts for the information workflow are: 
0 

0 Theartfiles 
The manuals, help files, web content, etc. produced by the documentation group 

The other artifacts listed in the table already exist in the RUP but now contain additional 
sections, supplied by the documentation group, about user information requirements and 
considerations. 

Drocess 

Integrate art package I Technical illustrator 1 &files 

Transition phase 
In this phase of a project, the information set is deployed (with the rest of the software product) 
to the users. 

There are no new artifacts for the information workflow in this phase. The artifacts listed in the 
table already exist in the RUP but now contain additions, supplied by the documentation group, 
about user information requirements and considerations. 

236 
0-7803431-7/00/!$10.00 0 2000 IEEE 



Technology & Teamwork 

SUMMARY 

Adding documentation to the Rational Unified Process is not as complex as the previous tables 
might make it appear. Documentation processes closely parallel the analyze-design-implement- 
test-release sequence of activities that programmers follow to write the code. However, the 
documentation workers require different skills than the software development workers, and the 
artifacts produced are different fiom the bits, however tightly integrated. In addition, 
information development has dependencies on the code development. So it is worthwhile to 
look at information development as a separate process, while at the same time preserving points 
of integration and making use of the common treatments of key concepts, task analyses, and 
data models. 

Changes to Existing Workers, Artifacts, and Workflows 
As noted in the section on documentation workers and artifacts, the information development 
roles must be elaborated beyond technical writer. As is always the case, these are roles, not job 
titles: multiple roles are likely to be performed by individuals. The artifacts may be similarly 
combined. But all documentation groups must address organization, structure, and navigation of 
information; production of help, online text, and manuals; consistent style and formatting; 
artwork; delivery media; and so forth. Making the roles, activities, and artifacts part of the RUP 
will ensure smoother and better information development, and a higher-quality product overall. 

In particular, use cases can benefit information design and development by helping 
documentation groups focus on essential interactions with the system. Conversely, use case 
development may also benefit fiom the involvement of technical writers, who bring a user focus 
driven by their more direct accountability: bad documentation is immediately noticeable to a 
user, where a bad system design may take several iterations to become exposed. 

This paper identifies integration points between a software development process and a 
documentation development process. In order for this integration to take place, the following 
first steps need to be in place: 

The software development process must be articulated and adopted 
A documentation development process must be articulated and adopted 
The documentation group’s involvement in the software process must start at the 
beginning; many of the integration points identified occur in early phases of the 
process. 
The documentation and s o h a r e  development groups must share ownership of key 
documents, in particular the glossary and use cases. 

While each of these steps has rewards in itself, the final pay-off is provided by the integration of 
the two processes, which eliminates redundant work, ensures consistency of terminology and 
functionality, and makes use of the strengths of both software and documentation worker in the 
shared development of their delivertibles. 

Next Steps 
User information is one piece of the “user experience” or the “user interaction” aspects of 
software products. This workflow could be expanded to include U1 design and usability 
evaluation, GUI screen text development and maintenance, and courseware. The existing RUP 
role of user interjiuce designer is an excellent start at this, but does not fully explore the 
integration of user interface and documentation, which is the place where consistency between 
software and documentation is most important, and most harmful when missing. 

237 
0-7803-6431-7/00/$10.00 0 2000 IEEE 



Technology & Teamwork 

Traditionally, different groups are responsible for these activities and artifacts, but users' ability 
to make efficient and effective use of the software is negatively affected if these information 
sources are inconsistent, redundant, contradictory, or leave gaps for the users to fall through. If 
the problems are big enough, expensive support calls and lost business can result. 

Expanding the Rational Unified Process to explicitly take the whole user experience into 
account would further improve the quality of software products.' 

ACKNOWLEDGEMENTS 

We would like to acknowledge the help of the following reviewers and contributors: 
Karl Hakkarainen and Liz Augustine of Rational Software 
The RUP team at Rational Software 

REFERENCES 

[ 13 Kruchten, Philippe. The Rational Unified Process: an Introduction. 2"d edition. 
Addison-Wesley, 2000. 

[2] Rational Unified Process. < http://www.rational.com/rup/index.jhtml > 

[3] Utt, M.H., and R. Mathews. "Developing a User Information Architecture for Rational's 
ClearCase Product Family Documentation Set." Conference Proceedings; ACM SIGDOC 

. 1999, pages 86-92. 

[4] Cede  Paris, Nadine Ozkan, and Flor Bonifacio. "Novel Help for On-line Help." Conference 
Proceedings, ACM SIGDOC 1998. pp. 70 - 79. 

ABOUT THE AUTHORS 

Michael Priestly is an information developer for the IBM Toronto Software Development 
Laboratory. He has written numerous papers on subjects such as hypertext navigation, 
singlesourcing, and interfaces to dynamic documents. He is currently working on XML and 
XSL prototypes for help and documentation management. 

Mary Hunter Utt is a web user interface engineer at Sitescape, Inc. She has considerable 
experience in U1 designhsabililty, information architecture, and web application development. 

238 
0-7803-6431-7/00/$10.00 0 2000 IEEE 

http://www.rational.com/rup/index.jhtml

